
Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 5: Chart Modules

Chapter 28. Chart2 API Overview

At over 1,600 pages the OpenOffice Developer's Guide

isn't a quick read, but you might expect it to cover all the

major parts of the Office API. That's mostly true, except

for one omission – there's no mention of the chart2

charting module. It's absent from the guide, the online

examples, and only makes a brief appearance in the Wiki,

at https://wiki.openoffice.org/wiki/Chart.

That's not to say that chart creation isn't explained in the

guide; chapter 10 is all about that topic, but using the older

charting module, called chart (as you might guess). One

source of confusion is that both modules have a similar

top-level interface to Calc via XTableChart and XChartDocument, but they rapidly

diverge as you progress further into the APIs. A sure way to make code crash is to

mix services and interfaces from the two modules.

Since newer is obviously better, the question arises as to why the Developer's Guide

skips chart2? The reason seems to be historical – the guide was written for

OpenOffice version 3.1, which dates from the middle of 2009. The chart2 module was

released two years before, in September 2007, for version 2.3. That release came with

dire warnings in the Wiki about the API being unstable and subject to change,

comments that are still there. I'm sure those warnings were valid back in 2007, but

chart2 underwent a lot of development over the next three years before LibreOffice

was forked off in September 2010. After that the pace of change slowed, mainly

because the module was stable. For example, Calc's charting wizard is implemented

using chart2.

Since the developer's guide hasn't been updated in six years, the chart2 module hasn't

received much notice. I'll be rectifying that by concentrating solely on chart2

programming; I won't be using the old chart API.

The primary source of online information about chart2 is its API documentation at

http://api.libreoffice.org/docs/idl/ref/namespacecom_1_1sun_1_1star_1_1chart2.html,

or you can access it with lodoc chart2.

The only extensive programming resource I've found on chart2 is a Japanese site

(http://hermione.s41.xrea.com/pukiwiki/index.php?OOoBasic%2FCalc%2Fchart2)

which uses the OOoBasic version of the API. It's a great site, but often offline; one

partly remedy is to use Google's cached copies of some of its pages.

One problem with searching the Web for examples is that programs using the chart2

and chart modules look similar. The crucial difference for Java is that most of the

chart2 services and interfaces are inside the "com.sun.star.chart2" package whereas

the older chart services and interfaces are inside "com.sun.star.chart" (no "2").

Another way to distinguish between examples, especially for programs written in

Basic, is to look at the names of the chart services. The old chart names end with the

word "Diagram" (e.g. BarDiagram, DonutDiagram, LineDiagram) whereas the chart2

names either end with the word "ChartType" (e.g. BarChartType, PieChartType,

LineChartType), or with no special word (e.g. Bar, Donut, Line).

Topics: Charting

Elements; Chart

Creation: TableChart,

ChartDocument, linking

template, diagram, and

data source; Modifying

Chart Elements:

diagram, coordinate

system, chart type, data

series

Example folders:

"Chart2 Tests" and

"Utils"

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

A good way to get a feel for chart2's functionality is to look at chapter 3 of Calc's user

guide, available from https://www.libreoffice.org/get-help/documentation/. It

describes the charting wizard, which acts as a very nice GUI for most of the chart2

API. The chapter also introduces a lot of charting terminology (e.g. chart types, data

ranges, data series) used in the API.

1. Charting Elements

Different chart types share many common elements, as illustrated in Figure 1.

Figure 1. Typical Chart Elements.

Most of the labeled components in Figure 1 are automatically included when a chart

template is instantiated; the programmer typically only has to supply text and a few

property settings, such as the wall color and font size.

There are ten main chart types, which are listed when the "Chart Wizard" is started

via Calc's Insert Chart menu item. Figures 2 shows the possibilities.

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

Figure 2. Ten Chart Types.

Most of the types offer variants, which are displayed as icons to the right of the dialog

window. When you position the mouse over an icon, the name of the variant appears

briefly in a tooltip, as in Figure 3.

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

Figure 3. A Column Chart Icon with its Tooltip Name.

When the checkboxes, buttons, or combo boxes are selected in the dialog, the icons

change to reflect changes in the variants.

The three most common variants are "3D", "Stacked" and "Percent". "Stacked" is

utilized when the chart displays multiple data sequences stacked on top of each other.

"Percent" is combined with "Stacked" to stack the sequences in terms of their

percentage contribution to the total. A lengthy discussion about chart variants can be

found in chapter 3 of the Calc User Guide, in the section "Gallery of Chart Types".

In the chart2 API, the variants are accessed via template names, which are listed in

Table 1.

Chart Types Template Names

Column Stacked

Percent

3D

Column, StackedColumn, PercentStackedColumn,

ThreeDColumnDeep, ThreeDColumnFlat,

StackedThreeDColumnFlat,

PercentStackedThreeDColumnFlat

Bar Stacked

Percent

3D

Bar, StackedBar, PercentStackedBar,

ThreeDBarDeep, ThreeDBarFlat,

StackedThreeDBarFlat,

PercentStackedThreeDBarFlat

Pie Donut

Exploded

3D

Pie, Donut,

PieAllExploded, DonutAllExploded,

ThreeDPie, ThreeDPieAllExploded,

ThreeDDonut, ThreeDDonutAllExploded

Area Stacked

Percent

3D

Area, StackedArea, PercentStackedArea,

ThreeDArea, StackedThreeDArea,

PercentStackedThreeDArea

Line Symbol

Stacked

Percent

3D

Line, Symbol, LineSymbol,

StackedLine, StackedSymbol, StackedLineSymbol,

PercentStackedLine, PercentStackedSymbol,

PercentStackedLineSymbol,

ThreeDLine, ThreeDLineDeep,

StackedThreeDLine, PercentStackedThreeDLine

XY

(Scatter)

Line

3D

ScatterSymbol, ScatterLine, ScatterLineSymbol,

ThreeDScatter

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

Bubble Bubble

Net Line

Symbol

Filled

Stacked

Percent

Net, NetLine, NetSymbol, FilledNet,

StackedNet, StackedNetLine,

StackedNetSymbol, StackedFilledNet,

PercentStackedNet, PercentStackedNetLine,

PercentStackedNetSymbol,

PercentStackedFilledNet

Stock Open

Volume

StockLowHighClose,

StockOpenLowHighClose,

StockVolumeLowHighClose,

StockVolumeOpenLowHighClose

Column

and Line

Stacked ColumnWithLine, StackedColumnWithLine

Table 1. Chart Types and Template Names.

The templates I'll be using are highlighted in bold in Table 1.

The template names are closely related to the tooltip names in Calc's chart wizard. For

example, the tooltip name in Figure 3 corresponds to the "PercentStackedColumn"

template.

It's also possible to create a chart using a chart type name, which are listed in Table 2.

Chart Chart Type Names

Column ColumnChartType

Bar BarChartType

Pie PieChartType

Area AreaChartType

Line LineChartType

XY (Scatter) ScatterChartType

Bubble BubbleChartType

Net NetChartType, FilledNetChartType

Stock CandleStickChartType

Table 2. Chart Type Names.

Note that a stock chart graph is drawn using a CandleStickChartType, and that there's

no type name for a column and line chart because it's implemented as a combination

of ColumnChartType and BarChartType.

Almost all my examples will use chart templates. I'll only use chart type names when

I want to add extra data to an existing chart (e.g. add a line graph to a stock chart).

The chart2 module is quite complex, so I've hidden a lot of details inside methods in

my Chart2.java class. It simplifies four kinds of operation:

1. The creation of a new chart in a spreadsheet document, based on a template name.

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

2. The accessing and modification of elements inside a chart, such as the title,

legend, axes, and colors.

3. The addition of extra data to a chart, such as error bars or a second graph.

4. The embedding of a chart in a document other than a spreadsheet, namely in a text

document or slide presentation.

Operations no. 1 (chart creation) and no. 2 (element modification) are used by all my

examples, so the rest of this chapter will give an overview of how the corresponding

Chart2.java methods work.

Programming details specific to particular charts will be discussed in subsequent

chapters:

 column: chapter 29;

 bar, pie, area, line: chapter 30;

 XY (scatter): chapter 31;

 bubble, net, stock: chapter 32.

2. Chart Creation

Chart creation can be divided into three steps:

1. A TableChart service is created inside the spreadsheet.

2. The ChartDocument service is accessed inside the TableChart.

3. The ChartDocument is initialized by linking together a chart template, diagram,

and data source.

The details are explained in the following sub-sections.

2.1. Creating a Table Chart

XTableCharts.addNewByName() adds a new TableChart to the TableCharts

collection in a spreadsheet. This is shown graphically in Figure 4, and is implemented

by Chart2.addTableChart().

Figure 4. Creating a new TableChart Service.

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

Chart2.addTableChart() is defined as:

// in the Chart2 class

public static void addTableChart(XSpreadsheet sheet,

 String chartName, CellRangeAddress cellsRange,

 String cellName, int width, int height)

// create table chart at cell name and size width x height

{

 XTableChartsSupplier chartsSupplier =

 Lo.qi(XTableChartsSupplier.class, sheet);

 XTableCharts tableCharts = chartsSupplier.getCharts();

 com.sun.star.awt.Point pos = Calc.getCellPos(sheet, cellName);

 Rectangle rect = new Rectangle(pos.X, pos.Y,

 width*1000, height*1000);

 CellRangeAddress[] addrs = new CellRangeAddress[]{ cellsRange };

 tableCharts.addNewByName(chartName, rect, addrs, true, true);

} // end of addTableChart()

The arguments passed to Chart2.addTableChart() include the new chart's name, the

cell range used as a data source, and the chart's position and dimensions when drawn

in the Calc window.

The position is a cell name (e.g. "A1"), which becomes the location of the top-left

corner of the chart in the Calc window. The name is converted into a position by

calling Calc.getCellPos(). The size of the chart is supplied as millimeter width and

height arguments and converted into a Rectangle in 1/100mm units.

My methods assume that the data range has a specific format, which is illustrated by

Figure 5.

Figure 5. Cell Range Data Format.

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

The data is organized into columns, the first for the x-axis categories, and the others

for the y-axis data displayed as graphs. The first row of the data range contains labels

for the x-axis and the graphs.

For example, the data range in Figure 5 is drawn as a Column chart in Figure 6.

Figure 6. A Column Chart Using the Data in Figure 5.

The assumption that the first data column are x-axis categories doesn't apply to scatter

and bubble charts which use numerical x-axis values. I'll give examples of those in

later chapters.

The data format assumptions are used in the call to XTableCharts.addNewByName()

in Chart2.addTableChart() by setting its last two arguments to true. This specifies that

the top row and left column will be used as categories and/or labels. More specific

format information will be supplied later.

2.2. Accessing the Chart Document

Although Chart2.addTableChart() adds a table chart to the spreadsheet, it doesn't

return a reference to the new chart document. That's obtained by calling

Chart2.getChartDoc():

Chart2.addTableChart(sheet, chartName, cellsRange, cellName,

 width, height);

XChartDocument chartDoc = Chart2.getChartDoc(sheet, chartName);

Chart2.getChartDoc() accesses the spreadsheet's collection of TableCharts, searching

for the one with the given name. The matching TableChart service is treated as an

XEmbeddedObjectSupplier interface, which lets its embedded chart document be

referenced. These steps are illustrated by Figure 7.

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 9 © Andrew Davison 2017

Figure 7. Accessing a Chart Document.

Chart2.getChartDoc() implements Figure 7, using Chart2.getTableChart() to access

the named table chart:

// in the Chart2 class

public static XChartDocument getChartDoc(XSpreadsheet sheet,

 String chartName)

// return the chart doc from the sheet

{ // get the named table chart

 XTableChart tableChart = getTableChart(sheet, chartName);

 if (tableChart == null)

 return null;

 // chart doc is embedded inside table chart

 XEmbeddedObjectSupplier eos =

 Lo.qi(XEmbeddedObjectSupplier.class, tableChart);

 return Lo.qi(XChartDocument.class, eos.getEmbeddedObject());

} // end of getChartDoc()

public static XTableChart getTableChart(XSpreadsheet sheet,

 String chartName)

// return the named table chart from the sheet

{ // get the supplier for the table charts

 XTableChartsSupplier chartsSupplier =

 Lo.qi(XTableChartsSupplier.class, sheet);

 XTableCharts tableCharts = chartsSupplier.getCharts();

 XNameAccess tcAccess = Lo.qi(XNameAccess.class, tableCharts);

 // try to access the chart with the specified name

 XTableChart tableChart = null;

 try {

 tableChart = Lo.qi(XTableChart.class,

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 10 © Andrew Davison 2017

 tcAccess.getByName(chartName));

 }

 catch(Exception ex)

 { System.out.println("Could not access " + chartName); }

 return tableChart;

} // end of getTableChart()

2.3. Initializing the Chart Document

The chart document is initialized by linking three components: the chart template, the

chart's diagram, and a data source, as illustrated by Figure 8.

Figure 8. Initializing a Chart Document.

The initialization steps in Figure 8, and the earlier calls to Chart2.addTableChart() and

Chart2.getChartDoc() are carried out by Chart2.insertChart(). A typical call to

insertChart() would be:

CellRangeAddress rangeAddr = Calc.getAddress(sheet, "E15:G21");

XChartDocument chartDoc =

 Chart2.insertChart(sheet, rangeAddr, "A22", 20,11, "Column");

The first line converts "E15:G21" into a data range (this corresponds to the cells

shown in Figure 5), which is passed to Chart2.insertChart(). The "A22" string and the

20x11 mm dimensions specify the position and size of the chart, and the last argument

("Column") is the desired chart template (see Table 1). The result is the column chart

shown in Figure 6.

Chart2.insertChart() is:

// in the Chart2 class

// globals

private static final String CHART_NAME = "chart$$_";

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 11 © Andrew Davison 2017

public static XChartDocument insertChart(XSpreadsheet sheet,

 CellRangeAddress cellsRange, String cellName,

 int width, int height, String diagramName)

{

 String chartName = CHART_NAME + (int)(Math.random()*10000);

 // generate a random name

 addTableChart(sheet, chartName, cellsRange, cellName,

 width, height);

 // get newly created (empty) chart

 XChartDocument chartDoc = getChartDoc(sheet, chartName);

 // assign chart template to the chart's diagram

 System.out.println("Using chart template: " + diagramName);

 XDiagram diagram = chartDoc.getFirstDiagram();

 XChartTypeTemplate ctTemplate =

 setTemplate(chartDoc, diagram, diagramName);

 if (ctTemplate == null)

 return null;

 boolean hasCats = hasCategories(diagramName);

 // initialize data source

 XDataProvider dp = chartDoc.getDataProvider();

 PropertyValue[] aProps = Props.makeProps(

 new String[] { "CellRangeRepresentation", "DataRowSource",

 "FirstCellAsLabel" , "HasCategories" },

 new Object[] { Calc.getRangeStr(cellsRange, sheet),

 ChartDataRowSource.COLUMNS, true, hasCats });

 XDataSource ds = dp.createDataSource(aProps);

 // add data source to chart template

 PropertyValue[] args = Props.makeProps("HasCategories", hasCats);

 ctTemplate.changeDiagramData(diagram, ds, args);

 // apply style settings to chart doc

 setBackgroundColors(chartDoc, Calc.PALE_BLUE, Calc.LIGHT_BLUE);

 // background and wall colors

 if (hasCats) // charts using x-axis categories

 setDataPointLabels(chartDoc, Chart2.DP_NUMBER);

 // show y-axis values

 printChartTypes(chartDoc);

 return chartDoc;

} // end of insertChart()

insertChart() creates a new chart document by calling addTableChart() and

getChartDoc(), and then proceeds to link the chart template, diagram, and data source.

Get the Diagram

The chart diagram is the easiest to obtain, since it's directly accessible via the

XChartDocument reference:

// part of Chart2.insertChart()...

XDiagram diagram = chartDoc.getFirstDiagram();

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 12 © Andrew Davison 2017

Creating a Template

Creating a chart template is a few more steps. requiring the creation of a

XChartTypeManager interface inside Chart2.setTemplate():

// in the Chart2 class

public static XChartTypeTemplate setTemplate(

 XChartDocument chartDoc,

 XDiagram diagram, String diagramName)

// set diagram to use the specified chart template

{ try {

 XChartTypeManager ctMan = chartDoc.getChartTypeManager();

 XMultiServiceFactory msf =

 Lo.qi(XMultiServiceFactory.class, ctMan);

 String templateNm = "com.sun.star.chart2.template." +

 diagramName;

 XChartTypeTemplate ctTemplate =

 Lo.qi(XChartTypeTemplate.class,

 msf.createInstance(templateNm));

 if (ctTemplate == null) {

 System.out.println("Could not create chart template \"" +

 diagramName + "\"; using a column chart");

 ctTemplate = Lo.qi(XChartTypeTemplate.class,

 msf.createInstance(

 "com.sun.star.chart2.template.Column"));

 }

 ctTemplate.changeDiagram(diagram);

 return ctTemplate;

 }

 catch(Exception ex) {

 System.out.println("Could not set chart to "+diagramName);

 return null;

 }

} // end of setTemplate()

The diagramName value is one of the template names shown in Table 1 (e.g.

"Column"). The string "com.sun.star.chart2.template." is added to the front to create a

fully qualified service name, which is then instantiated. If the instance creation fails,

then the function falls back to creating an instance of the "Column" template.

setTemplate() ends by calling XChartTypeTemplate.changeDiagram() which links the

template to the chart's diagram.

Get the Data Source

Back in Chart2.insertChart(), the right-most branch of Figure 8 involves the creation

of an XDataProvider instance:

// part of Chart2.insertChart()...

XDataProvider dp = chartDoc.getDataProvider();

This data provider converts the chart's data range into an XDataSource:

// part of Chart2.insertChart()...

boolean hasCats = hasCategories(diagramName);

PropertyValue[] aProps = Props.makeProps(

 new String[] { "CellRangeRepresentation", "DataRowSource",

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 13 © Andrew Davison 2017

 "FirstCellAsLabel" , "HasCategories" },

 new Object[] { Calc.getRangeStr(cellsRange, sheet),

 ChartDataRowSource.COLUMNS, true, hasCats });

XDataSource ds = dp.createDataSource(aProps);

The properties passed to XDataProvider.createDataSource() specify more details

about the format of the data in Figure 5 – the data for each graph is organized into

columns with the first cell being the label for the graph. The "HasCategories" property

is set to true when the first column of the data is to be used as x-axis categories.

These properties passed to createDataSource() are described in the documentation for

the TabularDataProviderArguments service, which you can access using lodoc

TabularDataProviderArguments.

The hasCats boolean is set by examining the diagram name: if it's an XY scatter chart

or bubble chart then the first column of data will not be used as x-axis categories, so

the boolean is set to false:

// in the Chart2 class

public static boolean hasCategories(String diagramName)

{

 String name = diagramName.toLowerCase();

 if (name.contains("scatter") || name.contains("bubble"))

 return false;

 return true;

} // end of hasCategories()

Linking the template, diagram, and data source

Now the data source can populate the diagram using the specified chart template

format:

// part of Chart2.insertChart()...

PropertyValue[] args = Props.makeProps("HasCategories", hasCats);

ctTemplate.changeDiagramData(diagram, ds, args);

At this point the chart will be drawn in the Calc application window, and

Chart2.insertChart() could return. Instead my code modifies the appearance of the

chart in two ways:

// part of Chart2.insertChart()...

// apply some style settings to chart doc

setBackgroundColors(chartDoc, Calc.PALE_BLUE, Calc.LIGHT_BLUE);

 // color the background and wall colors

if (hasCats) // charts using x-axis categories

 setDataPointLabels(chartDoc, Chart2.DP_NUMBER);

 // show y-axis values on the data points

Chart2.setBackgroundColors() changes the background and wall colors of the chart

(see Figure 6). Chart2.setDataPointLabels() switches on the displaying of the y-axis

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 14 © Andrew Davison 2017

data points as numbers which appear just above the top of each column in a column

chart. I'll describe how these methods work in the next section.

The call to Chart2.printChartTypes() at the end of Chart2.insertChart() could be

commented out since it's a diagnostic check. It prints the names of the chart types

used by the template.

3. Accessing and Modifying Chart Elements

Almost every aspect of a chart can be adjusted, including such things as its color

scheme, the fonts, the scaling of the axes, the positioning of the legend, axis labels,

and titles. It's also possible to augment charts with regression line details, error bars,

and additional graphs.

These elements are located in a number of different places in the hierarchy of services

accessible through the ChartDocument service. A simplified version of this hierarchy

is shown in Figure 9.

Figure 9. The Hierarchy of Services Below ChartDocument.

I'll supply more information about the Diagram, CoordinateSystem, ChartType, and

DataSeries services as this section progresses, but Figure 9 indicates that Diagram

manages the legend, floor and chart wall, CoordinateSystem is in charge of the axes,

and the data points are manipulated via DataSeries.

The "1" and "*" in the figure indicate that a diagram may utilize multiple coordinate

systems, that a single coordinate system may display multiple chart types, and a single

chart type can employ many data series. Fortunately, this generality isn't often needed

for the charts created by Chart2.insertChart(). In particular, the chart diagram only

uses a single coordinate system and a single chart type (most of the time).

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 15 © Andrew Davison 2017

3.1. Accessing the Diagram

A chart's Diagram service is easily reached by calling

ChartDocument.getFirstDiagram(), which returns a reference to the diagram's

XDiagram interface:

XDiagram diagram = chartDoc.getFirstDiagram();

XDiagram contains several useful methods (e.g. getLegend(), getWall(), getFloor()),

and its services hold many properties (e.g. "StartingAngle" used in pie charts and

"RotationVertical" for 3D charts). This is summarized by Figure 10.

Figure 10. The Diagram Service.

The easiest way to access the documentation for Diagram and XDiagram is via loDoc:

> loDoc chart2 diagram

 > loDoc xdiagram

Chart2.setBackgroundColors() changes the background and wall colors of the chart

through the ChartDocument and Diagram services:

// in the Chart2 class

public static void setBackgroundColors(XChartDocument chartDoc,

 int bgColor, int wallColor)

{ if (bgColor > 0) {

 XPropertySet bgProps = chartDoc.getPageBackground();

 // Props.showProps("Background", bgProps);

 Props.setProperty(bgProps, "FillBackground", true);

 Props.setProperty(bgProps, "FillStyle", FillStyle.SOLID);

 Props.setProperty(bgProps, "FillColor", bgColor);

 }

 if (wallColor > 0) {

 XDiagram diagram = chartDoc.getFirstDiagram();

 XPropertySet wallProps = diagram.getWall();

 // Props.showProps("Wall", wallProps);

 Props.setProperty(wallProps, "FillBackground", true);

 Props.setProperty(wallProps, "FillStyle", FillStyle.SOLID);

 Props.setProperty(wallProps, "FillColor", wallColor);

 }

} // end of setBackgroundColors()

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 16 © Andrew Davison 2017

The chart background is manipulated with a property set accessible through

XChartDocument.getPageBackground(), while the wall is reached with

XDiagram.getWall().

The documentation for the getPageBackground() and getWall() methods doesn't list

the contents of their property sets, so the easiest way of finding out what's available is

by calling Props.showProps(). Two showProps() calls are commented out in the code

above.

Most chart services inherit a mix of four property classes:

 com.sun.star.style.CharacterProperties

 com.sun.star.style.ParagraphProperties

 com.sun.star.drawing.LineProperties

 com.sun.star.drawing.FillProperties

Since getWall() and getPageBackground() both deal with areas in the chart, their

properties come from the FillProperties class.

3.2. Accessing the Coordinate System

Figure 10 shows that the diagram's coordinate systems are reached through

XCoordinateSystemContainer.getCoordinateSystems(). Chart2.getCoordSystem()

assumes that the programmer only wants the first coordinate system:

// in the Chart2 class

public static XCoordinateSystem getCoordSystem(

 XChartDocument chartDoc)

{ XDiagram diagram = chartDoc.getFirstDiagram();

 XCoordinateSystemContainer coordSysCon =

 Lo.qi(XCoordinateSystemContainer.class, diagram);

 XCoordinateSystem[] coordSys =

 coordSysCon.getCoordinateSystems();

 if (coordSys.length > 1)

 System.out.println("No of coord systems: " + coordSys.length +

 "; using first");

 return coordSys[0]; // return first

} // end of getCoordSystem()

The CoordinateSystem service is employed to access the chart's axes and its chart

type (or types), as in Figure 11.

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 17 © Andrew Davison 2017

Figure 11. The CoordinateSystem Service.

I'll describe the Axis service when I look at methods for adjusting axis properties. It

contains a lot of properties, which are documented online. The easiest way to access

the page is with loDoc chart2 axis service. The extra lodoc arguments help to

narrow the search since the word "axis" is used in multiple places in the chart2 and

chart modules.

3.3. Accessing the Chart Type

Figure 11 shows that the chart types in a coordinate system are reached through

XChartTypeContainer.getChartTypes(). Chart2.getChartType() assumes the

programmer only wants the first chart type in the array:

// in the Chart2 class

public static XChartType getChartType(XChartDocument chartDoc)

{

 XChartType[] chartTypes = getChartTypes(chartDoc);

 return chartTypes[0]; // get first

}

public static XChartType[] getChartTypes(XChartDocument chartDoc)

{

 XCoordinateSystem coordSys = getCoordSystem(chartDoc);

 XChartTypeContainer ctCon =

 Lo.qi(XChartTypeContainer.class, coordSys);

 return ctCon.getChartTypes();

} // end of getChartTypes()

Figure 12 shows the main components of the ChartType service.

Figure 12. The ChartType Service.

Somewhat surprisingly, the ChartType service isn't the home for chart type related

properties; instead XChartType contains methods for examining chart type "roles",

which I'll describe later. One useful features of XChartType is getChartType() which

returns the type as a string.

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 18 © Andrew Davison 2017

The CandleStickChartType service inherits ChartType, and contains properties related

to stock charts.

Use loDoc chart2 charttype to view the online documentation for ChartType.

3.4. Accessing the Data Series

Figure 12 shows that the data series for a chart type is accessed via

XDataSeriesContainer.getDataSeries(). This is implemented by

Chart2.getDataSeries():

// in the Chart2 class

public static XDataSeries[] getDataSeries(XChartDocument chartDoc)

{

 XChartType xChartType = getChartType(chartDoc);

 XDataSeriesContainer dsCon =

 Lo.qi(XDataSeriesContainer.class, xChartType);

 return dsCon.getDataSeries();

} //end of getDataSeries()

The DataSeries service is one of the more complex parts of the Chart2 module

because of its support for several important interfaces. I won't explain all of them just

yet; Figure 13 focuses on the XDataSeries interface.

Figure 13. The DataSeries Service and XDataSeries Interface.

A DataSeries represents a series of data points in the chart. Changes to the look of

these data points (e.g. adding numbers next to the points, or changing their shape and

color) can be done in two ways. A data series as a whole maintains a set of properties,

most of which are inherited from the DataPointProperties class. Typical

DataPointProperies values are "Color", "Shape", "LineWidth". The online

documentation can be accessed by calling lodoc DataPointProperties.

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 19 © Andrew Davison 2017

It's also possible to adjust point properties on an individual basis by accessing a

particular data point by calling XDataSeries.getDataPointByIndex(). As the method

name suggests, this requires an index value for the point, which can be a little tricky

to determine.

I can now explain the second of the two chart changing methods called at the end of

Chart2.insertChart(): Chart2.setDataPointLabels(), which switches on the displaying

of the y-axis data points as numbers. The call is:

// part of Chart2.insertChart()...

setDataPointLabels(chartDoc, Chart2.DP_NUMBER);

Chart2.setDataPointLabels() uses Chart2.getDataSeries() described above, which

returns an array of all the data series used in the chart. setDataPointLabels() iterates

through the array and manipulates the "Label" property for each series. In other

words, it modifies each data series property without accessing each point. The code

for Chart2.setDataPointLabels():

// in the Chart2 class

// data point label types

public static final int DP_NUMBER = 0;

public static final int DP_PERCENT = 1;

public static final int DP_CATEGORY = 2;

public static final int DP_SYMBOL = 3;

public static final int DP_NONE = 4;

public static void setDataPointLabels(XChartDocument chartDoc,

 int labelType)

// change label type for all data series

{

 XDataSeries[] dataSeriesArr = getDataSeries(chartDoc);

 for (XDataSeries dataSeries : dataSeriesArr) {

 // visit every data series

 DataPointLabel dpLabel =

 (DataPointLabel) Props.getProperty(dataSeries, "Label");

 dpLabel.ShowNumber = false; // reset show types

 dpLabel.ShowCategoryName = false;

 dpLabel.ShowLegendSymbol = false;

 if (labelType == DP_NUMBER)

 dpLabel.ShowNumber = true;

 else if (labelType == DP_PERCENT) {

 dpLabel.ShowNumber = true;

 dpLabel.ShowNumberInPercent = true;

 }

 else if (labelType == DP_CATEGORY)

 dpLabel.ShowCategoryName = true;

 else if (labelType == DP_SYMBOL)

 dpLabel.ShowLegendSymbol = true;

 else if (labelType == DP_NONE) {} // do nothing

 else

 System.out.println("Unrecognized label type");

 Props.setProperty(dataSeries, "Label", dataPointLabel);

 }

} // end of setDataPointLabels()

Java LibreOffice Programming. Chapter 28. Chart2 API Draft #2 (20th March 2017)

 20 © Andrew Davison 2017

The "Label" DataSeries property is inherited from DataPointProperties (see lodoc

DataPointProperties). "Label" is of type DataPointLabel which maintains four

'show' booleans for displaying the number and other kinds of information next to the

data point. Depending on the labelType value passed to Chart2.setDataPointLabels(),

one or more of these booleans are set and the "Label" property updated.

